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ABSTRACT: Sexual selection is often quantified using Bateman gra-
dients, which represent sex-specific regression slopes of reproductive
success on mating success and thus describe the expected fitness
returns from mating more often. Although the analytical framework
for Bateman gradients aimed at covering all sexual systems, empirical
studies are biased toward separate-sex organisms, probably because
important characteristics of other systems remain incompletely
treated. Our synthesis complements the existing Bateman gradient
approach with three essential reproductive features of simultaneous
hermaphrodites. First, mating in one sex may affect fitness via the
opposite sex, for example, through energetic trade-offs. We integrate
cross-sex selection effects and show how they help characterizing
sexually mutualistic versus antagonistic selection. Second, male and
female mating successes may be correlated, complicating the inter-
pretation of Bateman gradients. We show how to quantify the impact
of this correlation on sexual selection and propose a principal com-
ponent analysis on male and female mating success to facilitate in-
terpretation. Third, self-fertilization is accounted for by adding selfed
progeny as a separate category of reproductive success to analyses of
Bateman gradients. Finally, using a worked example from the snail
Biomphalaria glabrata, we illustrate how the extended analytical
framework can enhance our understanding of sexual selection in
hermaphroditic animals and plants.

Keywords: mating success, reciprocal sperm exchange, reproductive
success, selfing, sex allocation, sexual antagonism.
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Introduction

Quantitative analyses of sexual selection have been strongly
influenced by Bateman’s (1948) seminal work on Dro-
sophila melanogaster. He found that male fitness increases
more strongly with mating success than female fitness and
triggered the development of quantitative measures of sex-
ual selection within formal selection theory (Crow 1958;
Wade 1979; Wade and Arnold 1980; Lande and Arnold
1983; Arnold 1994; Arnold and Duvall 1994; Andersson
and Iwasa 1996). Our synthesis is driven by the obser-
vation that empirical evaluations of these measures are
strikingly biased toward organisms with separate sexes
(called gonochorists hereafter; recent overviews in Jones
et al. 2005; Snyder and Gowaty 2007; Brown et al. 2009;
Hunt et al. 2009) but remain strongly underrepresented
in simultaneously hermaphroditic animals (called her-
maphrodites hereafter). We begin by briefly introducing
the Bateman gradient approach and its existing framework
for hermaphrodites. Next, we propose three conceptual
extensions that appear essential to more comprehensively
capture sexual selection in hermaphrodites. We finally ap-
ply this extended analytical framework to empirical data
and outline how it can inform a long-standing debate
about sex role preferences in hermaphrodites.

Bateman Gradients in Gonochorists

Three different measures are central to the Bateman gra-
dient approach (details in Arnold 1994; Jones 2009; for
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Table 1: Abbreviations and definitions used throughout the text

Abbreviation Definition
G Slope of a linear regression, used to define the (sexual) selection gradients
B General notation for a sexual selection gradient (=Bateman gradient)
B Bs Sexual selection gradients for males and females in gonochorists
B Bt Sexual selection gradients for male and female function in hermaphrodites (i.e., the change in RS, with MS
and in RS, with MS;, respectively)
B> Bim Sexual selection gradients in hermaphrodites that show cross-sex effects (i.e., the change in RS, with MS; and in
RS; with MS,, respectively)
I Standardized variance in relative reproductive success; “opportunity for selection”
I, I Respective I values for males and females
I Standardized variance in relative mating success; “opportunity for sexual selection”
L., L Respective I values for males and females
MS Mating success
MS,, MS;  Male and female MS

RS Reproductive success
RS, RS; Male and female RS

m>

abbreviations and definitions, see table 1): (1) variance in
relative reproductive success standardized by its squared
mean (I), (2) variance in relative mating success stan-
dardized by its squared mean (I,), and (3) the slope of a
linear regression of reproductive success on mating success
(By)> the so-called Bateman gradient (fig. 1).

The first two measures reflect opportunities or upper
limits rather than actual (sexual) selection. I and I, can
vary due to processes other than (sexual) selection, and
the resulting limitations for their informative value in
studies of sexual selection have been discussed extensively
elsewhere (Wade 1979; Clutton-Brock 1983; Sutherland
1985; Koenig and Albano 1986; Downhower et al. 1987;
Grafen 1987; Hubbell and Johnson 1987; Kokko et al.
1999; Fairbairn and Wilby 2001; Shuster and Wade 2003;
Jones 2009; Croshaw 2010; Klug et al. 2010; Wade and
Shuster 2010). We therefore follow others (Arnold 1994;
Arnold and Duvall 1994) in focusing on Bateman gradients
(also called sexual selection gradients) as more direct mea-
sures of sexual selection.

In gonochorists, Bateman gradients represent the slope
of a linear regression of sex-specific reproductive success
(RS) on sex-specific mating success (MS):

RS, = B,MS,, + const + &, (1a)

RS; = BMS; + const + &, (1b)
where const defines the intercept. The regression slopes
8., and B, (for males and females, respectively) reveal how
variation in MS,, or MS; contributes to differential RS, or
RS; (fig. 1). Put differently, Bateman gradients capture the
average reward (in terms of additional progeny) of being
more successful in mate searching, courtship, precopula-
tory competition, mating, or sperm competition (depend-

ing on how mating success is measured, which we discuss
below). & represents the regression residuals, capturing
variation in fitness due to sources other than mating
success.

Bateman gradients are often seen to characterize the
overall intensity of sexual selection, where a sex difference

Reproductive success

v

Mating success

Figure 1: Arbitrary data representing individual measurements of re-
productive success (RS) and mating success (MS) that are combined into
male (m) and female (f) Bateman gradients (). The distributions of RS
and MS often tend to be broader for males (gray with solid lines) than
for females (white with dotted lines), which manifests in a sex difference
in the corresponding standardized variances I and I. The Bateman gra-
dient—that is, the regression slope of RS on MS—indicates which sex
obtains (on average) higher fitness returns from mating more often. 8
can become negative if mating depresses fitness.



in sexual selection is indicated by significantly different
slopes. This interpretation is based on a path analytic view
of selection (Arnold 1994; Arnold and Duvall 1994), which
decomposes total selection into sexual and natural selec-
tion (such as viability or fecundity selection). Only those
paths that connect to fitness via mating success are con-
sidered sexually selected. Even though this stringent view
is challenged by recent pleas for broader definitions of
sexual selection (reviewed in Jennions and Kokko 2010),
we maintain it for the purpose of this synthesis.
Sex-specific Bateman gradients elegantly capture all the
possible combinations of sexual selection on the two sexes
(Arnold 1994; Jones 2009). The sex with the steeper Bate-
man gradient experiences stronger selection to increase
MS, whereas the other sex benefits less from additional
matings or may even suffer if RS declines with MS. Note
that Bateman gradients inform us exclusively about the
operation of sexual selection (Arnold and Duvall 1994) in
an “all else being equal” fashion. They do not capture how
the effort for obtaining additional matings trades off with
other life-history components (Jennions and Kokko 2010),
nor do they show responses to selection (Wade and Arnold
1980). Neither aspect is within the scope of this synthesis.

Bateman Gradients in Hermaphrodites

While analyses of sexual selection have historically focused
on gonochorists, there is growing awareness for an im-
portant role of sexual selection in simultaneous hermaph-
rodites (Charnov 1979; Queller 1983; Morgan 1994; Will-
son 1994; Baur 1998; Michiels 1998; Delph and Ashman
2006; Leonard 2006; Bedhomme et al. 2009). With both
sexes (and their associated traits) united in a single body,
hermaphrodites offer exciting perspectives to study how
sexual selection affects traits such as resource allocation
to male and female function (sex allocation: Charnov 1982;
Schirer 2009; Schirer and Janicke 2009), the expression
of copulatory roles (Charnov 1979; Anthes et al. 2006),
or the rate of self-fertilization (Goodwillie et al. 2005; Jarne
and Auld 2006). Moreover, while earlier theoretical work
suggested that runaway sexual selection may be restricted
in hermaphrodites because both male and female fitness
are depressed by the cost of male displays (Morgan 1994),
recent theoretical models (B. Kuijper, L. Schirer, and 1.
Pen, unpublished manuscript) and evidence for correlated
evolution of exaggerated male and female traits (Koene
and Schulenburg 2005; Beese et al. 2006; Anthes et al.
2008) point to the opposite. Placing all these mechanisms
in a quantitative context opens novel perspectives for our
understanding of sexual selection, both in hermaphrodites
and in general.

The assessment of Bateman gradients in hermaphrodites
has some tradition in plants, revealing some cases where
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floral morphology is subject to sexually antagonistic se-
lection (reviewed in Ashman and Morgan 2004; Delph and
Ashman 2006). Only a single study to date has explicitly
calculated the variance measures underlying the calcula-
tion of Bateman gradients for a hermaphroditic animal
(Lorenzi and Sella 2008), finding larger variation in female
than in male reproductive success under promiscuity.

The paucity of attempts to quantify sexual selection in
hermaphroditic animals is surprising, given that the initial
formulation of Bateman gradients explicitly envisioned their
universal application (Arnold 1994; Arnold and Duvall
1994). One drawback of these formulations is that some
facets that are central to hermaphrodite reproduction were
not explicitly treated. In this synthesis, we thus complement
and extend Arnold’s (1994) framework with three central
aspects that will enable a more comprehensive treatment of
sexual selection in hermaphrodites. In “Cross-Sex Effects in
Hermaphrodite Bateman Gradients,” we discuss the rele-
vance and analytical treatment of cross-sex interactions be-
tween male and female sex functions. In “Mating Success,
Mating Modes, and Bateman Gradients,” we outline how
reciprocal mating can lead to collinearity between predictor
variables and suggest an analysis based on principal com-
ponents to aid the interpretation of the resultant Bateman
gradients. In “Selfing and the Calculation of Bateman Gra-
dients,” we discuss the role of self-fertilization in sexual
selection and incorporate selfed offspring into the calcula-
tion of Bateman gradients.

Cross-Sex Effects in Hermaphrodite Bateman Gradients

Generalizing Bateman gradients to hermaphrodites re-
quires recognizing that each individual yields two measures
of MS (MS,, and MS; for male and female function, re-
spectively) and two measures of RS (RS, and RS;; table
1). Male and female measurements are thus inherently
nonindependent. As a solution, Arnold (1994) suggested
performing multiple regression analyses, where MS and
RS through the alternative sex functions are added as co-
variates (with coefficients a and b, respectively) to equa-
tions (1) and thus held constant; that is,

RS, = B, MS,_, + a, MS;+ b RS; + const + &, (2a)

RS; = BMS; + aMS_, + bRS,, + const + &;. (2b)
This approach successfully treats nonindependence of
male and female measurements but suffers from two weak-
nesses. First, adding RS in the other sex function to the
model merges predictor and response variables. Therefore,
we propose a covariance-based approach that solves this
issue. Second, Arnold (1994) added MS in the other sex
function only as a statistical control, not to explicitly study
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the interaction between male and female components of
fitness. We prefer to consider these cross-sex effects as
central biologically relevant parameters, rather than as a
statistical nuisance, when studying sexual selection in her-
maphrodites. In doing so, Bateman gradients inform us
not only about how male and female reproductive success
vary with their corresponding mating success but also
about whether and how these traits interfere with, or re-
inforce, each other (fig. 2).

Starting from equations (2a) and (2b), we remove RS
as a predictor variable and replace the covariate coefficients
aand b by terms that explicitly reflect the underlying cross-
sex effects (note that the latter does not modify the ana-
lytical procedure or outcome per se but rather highlights
our change in perspective to consider cross-sex terms a
central informative result):

RS, = B,.MS,, + B,.:MS; + const + ¢, (3a)

RS; = B;MS; + B, MS,, + const + &;. (3b)
The within-sex gradients (3,,,, and B) in these equations
are equivalent to those introduced for gonochorists
(eqq. [1]). For example, B; (in eq. [3b]) is the partial
regression of RS; on MS; while holding MS,, constant. The

Trait x,
e.g. nuptial gift
avg. fecundity
Trait x, of g mates

5 e.g. ejaculate size
g
3 tin
s | Bgl| cor Cccess
= B8 e.g. persuasion hy .
§ g S / ‘\ J reproductive
®» . success
2| g2 Trait x, e o o
& g 8 e.g. mate search '}‘~~ ) \\x
s | D efficiency o’ o VT -
g \ K ] @ reproductive
. ™ | success
“ Trait x; » @ mating —
e.g. resistance SUCCESS Ps o L!fetlme
o fitness
\°§a° 0‘_‘(\0
. @
avg. fecundity «
of @ mates

Many sexually and nonsexually selected traits

hermaphrodite-specific cross-sex coefficient (3, captures
how RS; varies with MS . For example, if male copulations
are energetically costly and reduce egg output, MS,, di-
minishes RS; and (;, becomes negative. Setting the cross-
sex terms to 0 simplifies equations (3) to the special case
applicable to gonochorists (eqq. [1]). Several novel re-
search questions arise in relation to the cross-sex terms:
How important are cross-sex interaction terms quantita-
tively compared with within-sex terms? What is the prev-
alence of sexually mutualistic selection (within-sex and
cross-sex terms of equal sign) versus sexually antagonistic
selection (opposite signs; see example in fig. 3)? Do the
cross-sex terms reinforce or decrease the difference in sex-
ual selection between the sexes? These fundamental ques-
tions have not yet been addressed empirically but are cru-
cial to understanding the role of cross-sex effects for sexual
selection in hermaphrodites.

Equations (3a) and (3b) remain unsatisfying in that we
relate the two response variables (RS, and RS;) indepen-
dently to the same set of predictor variables (MS,, and
MSy). This is not a statistical problem per se, because the
regression for each trait remains unbiased. From a bio-
logical perspective, however, we explicitly seek to under-
stand sexual selection under the constraints imposed on

Figure 2: Path diagram of selection illustrating how cross-sex terms (dashed arrows) complement the analysis of Bateman gradients in hermaphrodites
(modified from Arnold 1994; Arnold and Duvall 1994; abbreviations in table 1). Following these authors, we base our framework on a rather narrow
definition of sexual selection (dark gray), noting that many researchers favor broader views (light gray). The diagram also illustrates how Bateman

gradients complement analyses of sexual selection on specific traits x. Total sexual selection on x; (8

) is the Bateman gradient times the regression

585

slope that relates trait variation to mating success (8,,,). Formal details of such analyses have been developed elsewhere (Lande and Arnold 1983;

Morgan 1992) and are not further considered here.
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(B) ‘female’ gradients

RS
%

Figure 3: Arbitrary example illustrating the interactive nature of Bateman gradients in hermaphrodites. Male reproductive success (RS,; A) and
female reproductive success (RS;; B) are represented as partial regression planes on male and female mating success (MS,, and MS;). The graphs

exemplify positive Bateman gradients for each sex (8

'mm

and ;> 0) that are reduced by some costs of matings via the other sex function ({3, and

Bin < 0). The overall Bateman gradient is steeper for the male function (3,,,, > ), but male RS is depressed more strongly through female matings

than vice versa (8,.;< Bgn)-

RS,, and RS; by sex allocation trade-offs or budget effects
(Schirer 2009). In addition to the separate analyses for
each sex, we thus need to understand how the within- and
cross-sex effects contribute to covariance between RS, and
RS;. Hence, instead of adding opposite-sex fitness as co-
variates as in equations (2a) and (2b), we propose to ex-
pand the covariances between the expressions of RS, and
RS; in equations (3a) and (3b) to obtain

Cov (RS,,RS) =
Cov (BumMS,, + BuMS; + &4, B MS,, + B MS; + &) (4)

= Cov (B,uMS,, + BMS;, B MS,, + B:MS,) + Cov (e, &)

Note that the covariances between residuals (&) and pre-
dictors (MS) have been omitted because they are 0 by
definition. We now expand the left-hand covariance term
to obtain

Cov(RS,, RS =
BomBem Var (MS, ) + BB Var (MS,) 5)
*+ (BomBe + BuiBim) Cov (MS,, MS)) + Cov (g, £,,).

These terms identify the types of sexual or nonsexual se-
lection that contribute to covariation between RS_ and
RS;. Specifically, the first two terms represent the combined
effect of MS in one sex role on RS via both sexes. Each
term becomes negative when the direct and cross-sex ef-
fects have opposite signs (fig. 3), for example, when mating

in the male role reduces egg output, yielding 3, < 0. Neg-
ative terms thus identify sexually antagonistic selection.
The terms are positive when direct and cross-sex gradients
have equal signs, representing sexually mutualistic selec-
tion. The third term is the component of covariance be-
tween RS, and RS; due to covariance between MS_ and
MS.. It shows whether (positive or negative) covariance in
male and female mating success has a shared effect on
covariance in fitness. The last term describes the covari-
ance between the unexplained parts of RS and RS, that
is, variation that is not linked to MS. This residual vari-
ation is unlinked to sexual selection sensu stricto (fig. 2)
but may be under other forms of selection. For example,
this term may capture the effects of individual variation
in survival, which increases positive covariance between
male and female reproductive success. Likewise, effects of
postcopulatory selection that are not captured by the un-
derlying definition of mating success (“How Definitions
of Mating Success Affect Bateman Gradients”) will enter
this term. The decomposition can further reveal whether
the absence of covariance between RS, and RS; results
from a balance between sexual and nonsexual selection.
The worked example in “Bateman Gradients in Her-
maphrodites: A Worked Example” further exemplifies the
interpretation of this decomposition of covariances.

Mating Success, Mating Modes, and Bateman Gradients

In “Cross-Sex Effects in Hermaphrodite Bateman Gradi-
ents,” we outlined how cross-sex selection and noninde-
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pendence of male and female RS can be incorporated when
analyzing Bateman gradients in hermaphrodites. Here we
treat another important issue mentioned by Arnold
(1994), namely, that reciprocal gamete transfer between
mates (meaning that both partners assume both sexual
roles) increases collinearity between our predictor vari-
ables, male and female MS. Being widespread in her-
maphrodites (Charnov 1979; Michiels 1998), reciprocal
mating restricts the degree to which MS,, and MS; can vary
independently. To assess possible effects of covariation in
male and female MS on Bateman gradients, we first outline
alternative definitions of mating success, then discuss how
these distinctions may affect the degree to which male and
female MS are collinear, and finally propose a modified
analytical approach for data sets with strong predictor
collinearity.

How Definitions of Mating Success
Affect Bateman Gradients

Even within our rather narrow definition of sexual selec-
tion (fig. 2), the biological interpretation of Bateman gra-
dients varies depending on how exactly we define and
quantify mating success. We discuss the consequences of
using three different measures of MS that follow the tra-
dition of basing Bateman gradients on counts of the num-
ber of (actual or genetic) mates (Bateman 1948; Arnold
and Duvall 1994; terminology according to Shuster and
Wade 2003). These three measures of MS encompass the
result of sexual selection up to different selection episodes
between mate searching and fertilization (table 2), accu-
mulating the effects of sexually selected traits up to this
particular episode.

Mate-number promiscuity (table 2, stage a) counts the

number of different individuals with which a focal indi-
vidual has copulated and thus captures the maximum
number of partners with which the focal could share off-
spring. Mating-number promiscuity (table 2, stage b) re-
fers to the total number of copulations of a focal individ-
ual, meaning that consecutive matings with the same
partner are counted multiply. To some extent, this may
reflect differential sperm amounts donated and received
in multiple inseminations, even though decreasing ejac-
ulate sizes and diminishing returns for multiple insemi-
nations are not taken into account. Genetic mate-number
promiscuity (table 2, stage ¢) counts the number of in-
dividuals that actually bear the progeny of a focal male or
that sire the offspring of a focal female. Hence, only cop-
ulations that lead to successful fertilization are considered.

The first two measures directly relate to copulation as
a central target of sexual selection (e.g., Bjork and Pitnick
2006) and are close to Darwin’s original definition (Dar-
win 1871; see also Wade and Shuster 2005). On the down-
side, the derived Bateman gradients fail to capture vari-
ation in RS that is caused by sexually selected traits with
postcopulatory effects, such as ejaculate size, seminal fluid
components, sperm motility, or cryptic female choice (Par-
ker 1970; Thornhill 1983; Birkhead and Pizzari 2002). Ge-
netic mate-number promiscuity is more directly related to
fertilization as a final step in sexual selection than the
simple counts of mating partners (Arnold and Wade 1984)
and thus also captures those postcopulatory processes that
determine whether a given sire-dam combination achieves
any successful fertilization. Given its original usage by
Bateman (1948) and implementation into the analytical
framework by Arnold (1994), genetic mate-number prom-
iscuity is the most frequently used measure in Bateman
gradient analyses (recently, e.g., Jones et al. 2004, 2005;

Table 2: Effects of alternative measures of mating success on the meaning of derived Bateman gradients

Multiplicative components of fitness (W)  Stage Potential sexually selected traits
Precopulatory:

Encountered mates per day a Locating and reaching conspecifics (e.g., mobility, activity, pheromones)
Copulations per encountered mate b Achieving or avoiding copulations (e.g., choice, combat, display, coercion,
genital morphology)

Postcopulatory:
Fertilizations per copulation C Successful fertilization (e.g., sperm quality and quantity, seminal fluids, cryp-
tic choice, guarding)
Postzygotic:

Hatchlings per zygote

Juveniles per hatchling
effects

Adults per juvenile

Genetic compatibility, selective abortion, egg provisioning, etc.
Monopolization of maternal provisioning, maternal and paternal (genetic)

Maternal and paternal (genetic) effects

Note: Mate-number promiscuity (stage a), mating-number promiscuity (stage b), and genetic mate-number promiscuity (stage c) encompass sexual selection
up to different consecutive selection episodes (exemplified as multiplicative fitness components in the left column) and thus capture only those sexually

selected traits (right column) that acted up to this episode. Depending on the chosen measure, Bateman gradients thus reflect the expected fitness returns
from seeking and securing novel mates (a), copulating more often with familiar or novel partners (b), or successfully fertilizing more different partners (c).
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Figure 4: Arbitrary examples illustrating how hermaphrodite mating modes can generate collinearity between male and female mating success (MS).
When MS is defined at the level of copulations, individual MS, and MS; (and the variances of their underlying data distributions) will be identical
in systems with strictly reciprocal mating (A). The link between MS and MS; (and their population variances) becomes weaker when reciprocal
mating is not obligatory (B). In systems with unilateral matings (C), MS, and MS; are no longer mechanically connected. Depending on circumstances,
they may thus show positive, neutral (as plotted here), or negative covariance.

Mills et al. 2007; Levitan 2008). It is also convenient be-
cause it spares the effort of observing mating behavior,
since both mating success and reproductive success are
inferred from genetic markers. Nevertheless, we consider
the usage of this measure problematic, because it merges
pre- and postcopulatory components of sexual selection
and thus partially confounds predictor (MS) and response
(RS) variables. Each mating scored for genetic MS is au-
tomatically associated with at least one additional off-
spring, inherently biasing the regression of RS on MS.
Moreover, since we are looking at successful fertilizations
rather than copulations, a sampling artifact gives more
weight to more fecund females (Ketterson et al. 1997),
because the probability that a given female bears at least
one progeny of a given male increases with female fecun-
dity. Hence, even if all females in a population mated
exactly n times, the likelihood of detecting multiple sires
would increase with brood size, generating a positive Bate-
man gradient that does not reflect any sexual selection.

A reasonable solution to the outlined problems may be
to use multiple measures of MS. This permits one to par-
tition the relationship between MS and RS, as well as the
(potentially opposing) effects of focal traits, between suc-
cessive pre- and postcopulatory episodes of sexual selec-
tion and thus provides a more fine-scale understanding of
sexual selection.

Mating Success and Mating Modes in Hermaphrodites

Why does the underlying definition of mating success de-
termine the degree to which our two predictor variables,

MS,, and MS,, become collinear? The likelihood of collin-
earity increases the more closely the definition of mating
success relates to actual copulations. This effect is partic-
ularly strong in hermaphrodites that engage in reciprocal
(both partners assume both mating roles) rather than uni-
lateral (one partner acting in the male mating role, the
other in the female role) copulations. In what follows, we
focus on a copulation-related definition of MS, but note
that effects of mating mode may also carry over to genetic
definitions of MS.

In systems with strictly reciprocal mating, individuals
always copulate in both roles, leading to identical values
of MS,_, and MS; within individuals and thus to identical
population variances in MS,, and MS; (fig. 4A). This occurs
where conditionally bidirectional behavior (Anthes et al.
2005) or morphological restrictions on copulatory position
and genital interlock (e.g., some nudibranchs, earthworms,
flatworms) enforce reciprocal copulation. Independent op-
timization of MS; and MS_, is then restricted, and selection
can target only overall individual MS. Hence, in equations
(3a) and (3b), RS, and RS; are now both regressed on the
same predictor variable (MS, = MS)).

An intermediate situation (relaxed reciprocal mating)
arises where bidirectional gamete exchange is not morpho-
logically or behaviorally enforced but where animals vary
in their overall propensity to copulate or tend to alternate
mating roles between successive copulations (e.g., Sella and
Lorenzi 2000; Anthes and Michiels 2007; Facon et al. 2008).
MS,, and MS; will then generally be positively correlated
(fig. 4B), but their population variances can diverge when
some individuals bias their mating strategy to either male
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or female sex function. The other extreme is reached with
a strictly unilateral mating mode. As in gonochorists, MS,
and MS; can now vary independently and remain bound
only by their population means (fig. 4C). Individuals may
even specialize in the male or female mating role in response
to, for example, body size (Ohbayashi-Hodoki et al. 2004)
or age (Hermann et al. 2009), possibly leading to negative
correlations between MS_ and MS,.

Hermaphrodite mating modes can thus strongly affect
the degree to which MS and MS; are collinear, implying
that mating modes may affect the action and efficiency of
sexual selection. For example, one may expect precopu-
latory sexual selection to be particularly strong in her-
maphrodites that can independently optimize MS,, and
MS,, whereas the focus may shift to postcopulatory selec-
tion in systems with strictly reciprocal mating (Charnov
1979).

Collinear Mating Success and Principal Components

The analytical problem with collinearity between MS _ and
MS; when calculating Bateman gradients is that it makes
the multiple regression slope estimates statistically fragile
(Mitchell-Olds and Shaw 1987), because an overestimation
of one slope necessarily leads to an underestimation of the
other. In data sets with collinear predictors, MS, and MS;
should thus be replaced with their (per definition uncor-
related) principal components. The formal details of the
underlying principal component analyses (PCA), the
mathematical link between the PCA-based regression co-
efficients and those given in equations (3a) and (3b), and
the consequences for the decomposition of covariance
components (eq. [5]) are given in appendix A in the online
edition of the American Naturalist.

An important benefit of a PCA approach is that it aids
the biological interpretation of Bateman gradients when
MS,, and MS; are collinear in that it changes the biological
meaning of the resulting regression coefficients. The PCA
can be performed either on raw mating success values (i.e.,
on the variance-covariance matrix of MS_ and MS;) or on
standardized values (i.e., on the corresponding correlation
matrix). In both cases, one PC axis (PC,) is proportional
to the sum of (raw or standardized) MS_ and MS; (i.e.,
the position along the regression lines in fig. 4) and thus
captures overall mating activity (see app. A). Hence, co-
efficients for the regression of RS on PC, (8,,. and 8,
for RS,, and RS;, respectively) show how RS varies with
overall mating activity. This relationship cannot be attrib-
uted to either sex. Hence, if collinearity is strong (i.e., PC,
represents the major axis), the corresponding data set may
not allow disentangling sexual selection via male and fe-
male function separately.

The other PC axis (PC,) captures the difference between

MS,, and MS; within individuals (i.e., the orthogonal re-
siduals in fig. 4) and thus represents the sexual bias in
mating activity (see app. A). PC, becomes the major axis
in systems where individuals differ little in overall mating
activity but vary in how strongly they specialize on cop-
ulations in the male or female sexual role. Coefficients for
the regression of RS on PC, (Bnye, and B, ) indicate how
substituting a mating in one sex function by a mating in
the other sex function affects fitness. This information is
the prime added value of the PCA approach relative to
analyses of Bateman gradients based on the original values
of MS,, and MS;. We may intuitively expect 3, and
B, to be opposite in sign, meaning that a female bias in
mating activity tends to increase female fitness but to de-
press male fitness (and vice versa). Our worked example
in “Bateman Gradients in Hermaphrodites: A Worked Ex-
ample,” with indications for the opposite pattern, high-
lights the need for broad empirical evaluation.

The value of the PCA approach will depend on char-
acteristics of the specific data set and the research ques-
tions. Coefficients based on the original MS measurements
show the gain in fitness from engaging in one additional
mating through one sex function while holding mating
success in the other sex function constant. When MS_ and
MS; are strongly correlated, individuals rarely have such
an option. The PCA-based regression coefficients capture
such situations more intuitively, showing the gain in fitness
from substituting a mating in one sex function by a mating
in the other sex function. This also transfers into the mod-
ified covariance decomposition (eq. [A5] in app. A), which
then clearly highlights how overall variation in mating
activity on the one hand and specialization into the male
or female sex on the other hand contribute to the co-
variance between male and female RS.

Selfing and the Calculation of Bateman Gradients

A third phenomenon to consider when calculating Bate-
man gradients in simultaneous hermaphrodites is self-
fertilization (Jarne and Charlesworth 1993). Selfing is
widespread across the animal kingdom, and selfing rates
cover the full range between obligate outcrossing and ob-
ligate selfing (Tsitrone et al. 2003; Jarne and Auld 2006).
Self-fertilization has strong implications for sexual selec-
tion, which is typically seen to act between (not within)
individuals. Analyses of sexual selection in hermaphrodites
therefore require a framework that explicitly incorporates
selfing.

Arnold (1994) proposed to include the self and selfed
offspring into the tabulations of MS and RS, respectively.
This approach is unsatisfactory, however, because the treat-
ment of self-gametes in the context of sexual selection is
all but straightforward. The mechanisms for selfing and



successful cross-fertilization are not necessarily equivalent
and may interfere with each other. Moreover, selfed off-
spring may often be of inferior quality compared with
outcrossed offspring because of inbreeding depression
(Charlesworth and Charlesworth 1987; Jarne et al. 1991).
We therefore propose to, where feasible, cleanly separate
selfed and outcrossed offspring in quantifications of sexual
selection. This is achieved by treating selfed offspring (RS;)
as a distinct third fitness category next to the outcrossed
maternal and paternal offspring (RS, and RS,). RS; is then
twice the number of selfed offspring to adequately account
for the number of gene copies as the fitness currency.
Mating success retains its previous meaning and counts
the number of nonself mates. We thus maintain the Bate-
man gradients defined in equations (3a) and (3b) for out-
crossed offspring but add a third equation that exclusively
includes the offspring sired through selfing:
RS, = B,.MS,, + B.MS; + const + .. (30

The regression coefficients indicate how matings in the
male or female role affect the number of selfed offspring
(B, and B, respectively). We intuitively expect both terms
to be negative: 3, will be negative if male gametes are
limiting and thus gametes used for outcrossing subtract
from those available for selfing (pollen discounting; Lloyd
1992). B will be negative when there is ovule or egg dis-
counting, for example, because females preferentially out-
cross their eggs as long as allosperm are available (Tsitrone
et al. 2003). Real values may vary with selfing rate, the
efficiency of self-fertilization, and inbreeding depression,
calling for empirical evaluation in systems with differential
selfing strategies.

The covariance between selfed offspring and either ma-
ternal or paternal outcrossed offspring can be decomposed
equivalently to equations (5); for example,

Cov (RS, RS, =

BonBim Var (MS, ) + B8 Var (MS;) (5a)

+ (BB T BimBy) Cov (MS,,, MS;) + Cov (g, &,).

The first two terms show how the covariance between
selfed and maternal outcrossed offspring is affected by the
contributions of MS,, and MS;, respectively. The third term
reflects the effect of the correlation between MS_ and MS,.
The last term captures residual variance. Imagine, for ex-
ample, a preferential outcrosser without sperm discount-
ing, negligible effects of male matings on female fitness,
and compensation for occasional failure to find a mate by
self-fertilization. The resulting negative Cov (RS,, RS,) is
then primarily captured by B3 Var (MS,), illustrating the
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fact that low MS; reduces the production of outcrossed
maternal offspring (B, > 0) and triggers selfing (8, < 0).

It will be revealing to compare Bateman gradients and
the underlying covariance components of nonselfers with
selfers that follow alternative strategies. Delayed selfers
preferentially outcross and typically self-fertilize only to
compensate for a lack of sperm receipt (Tsitrone et al.
2003). This strategy should generate steep negative gra-
dients for selfed offspring (eq. [3c]) because those dis-
proportionally occur in the low-MS categories in both sex
functions. In systems with prior selfing (e.g., Tian-Bi et
al. 2008), equation (3c) may reveal shallower or even flat
Bateman gradients. Here, inbreeding depression must be
largely purged, and selfing is maintained even after re-
peated copulations. In such systems, selfing may thus serve
as a strategy in mate choice and sperm competition (Lloyd
1979; Liischer and Milinski 2003) rather than as a com-
pensatory mechanism, and the value of selfing in this con-
text could be quantified using the extended Bateman gra-
dient approach outlined here. In this context, measuring
RS, at consecutive developmental stages provides quanti-
fications of sexual selection that are more or less affected
by inbreeding depression. By comparing Bateman gradi-
ents obtained using RS based on fertilized eggs or seeds
with those obtained using RS based on later stages (hatch-
lings, seedlings, or juveniles), one can estimate how in-
breeding depression modifies the selection pressures on
mating as a male or as a female.

Bateman Gradients in Hermaphrodites:
A Worked Example

To exemplify the analysis of hermaphrodite Bateman gra-
dients outlined above, here we present a data set from the
freshwater snail Biomphalaria glabrata. Biomphalaria gla-
brata is a primarily outcrossing hermaphrodite (Mavarez
et al. 2002) that copulates frequently in the field and lab-
oratory (Vernon and Taylor 1996; Rupp and Woolhouse
1999). Copulations are easy to observe and allow distin-
guishing unilateral male, unilateral female, and reciprocal
copulations (Trigwell et al. 1997). Mating is typically uni-
lateral, and mating roles tend to be exchanged after suc-
cessful mating, conforming to “relaxed reciprocal mating,”
as discussed above. Snails lay multiple transparent egg
masses per week, each containing ~15-30 eggs (Pimentel
1957; Jarne et al. 1993). Because of inbreeding depression,
offspring are typically outcrossed when allosperm are avail-
able, but snails readily self-fertilize when sexually isolated
(Vianey-Liaud 1976; Vianey-Liaud et al. 1989).

Our data contain information on mating and repro-
ductive success for 30 replicate focal snails under a pro-
miscuous mating regime (details on data collection in app.
B in the online edition of the American Naturalist; fig. 5).
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Figure 5: Sample data set and within-sex Bateman gradients for 30 focal Biomphalaria glabrata snails (for details, see main text and app. B in the

online edition of the American Naturalist).

We find that the variance in RS is significantly higher for
the male (I, = 1.03) than for the female (I; = 0.18) sex-
ual function (Levene’s test: F ., = 7.74, P = .0073), in-
dicating that the opportunity for selection on the male
function exceeds that on the female function. No such
effect is detectable for the opportunity for sexual selection
(I, = 1.27, Iy = 1.64; F ;; = 0.11, P = .73; note that
this is likely due to restrictions on mating in the underlying
experiment; app. B). As outlined above, variance measures
alone are difficult to interpret, and we continue by cal-
culating the Bateman gradients. Using the simple within-
sex regressions (eqq. [1]), we find that RS,, and RS; both
increase significantly with sex-specific mating success, and
this effect is stronger in the male function (table 3; fig. 5).
The more comprehensive analysis including cross-sex
terms (eqq. [3]) confirms this pattern but further reveals
that RS, and RS; may also increase with matings in the
opposite sex role (B, and B, are positive; table 3). (Note
that these effects do not reach statistical significance in
our preliminary data set, which we here present for illus-
trative purposes, not for rigorous statistical analysis.)
Hence, mating success in B. glabrata may be under sexually
mutualistic rather than antagonistic selection.

For the subsequent decomposition of the observed pos-
itive covariance between RS, and RS; (table 4), we follow
the steps outlined in “Cross-Sex Effects in Hermaphrodite
Bateman Gradients.” We find that the values for the effect
of MS on RS via both sexes are positive (table 4). Hence,
mating more frequently in either sex function increases
the covariance between male and female fitness, which
supports the notion that selection on mating success is

sexually mutualistic. In addition, MS,, seems to capture
more of the total covariance in fitness than MS,, indicating
that RS,, and RS; correlate positively mostly because mat-
ing in the male role enhances both fitness components.
The next term shows whether some of the covariance be-
tween RS, and RS; is due to covariance between MS , and
MS;. We find that this term explains a sizable portion of
the total fitness covariance (table 4), implying that collin-
earity between MS and MS; has strong effects on both
male and female fitness. Finally, the error term describing
covariation that is not linked to MS and therefore inde-

Table 3: Regression coefficients for the Biomphalaria glabrata
sample data set obtained with the alternative methods for cal-
culating Bateman gradients

Regression Comparison
coefficient of slopes
Analysis/component B t P
Simple regression (eqq. [1]):
Male (m) 479 —2.390  .020
Female (f) 1217
Multiple regression (eqq. [3]):*
mm 375%* —2.250 .028
ff .053
mf .143 —1.49 .143
fm 120

Note: For details, see appendix B in the online edition of the American
Naturalist.

* Includes cross-sex effects.

* P<.05.

* P<.1.



Table 4: Decomposition of variance components based on a sam-
ple data set from Biomphalaria glabrata

Source data and term Value
Original MS:
Cov (RS,,, RSy) .093
BB Var (MS,,) .057
BniBi Var (MS)) 012
(BB T BmiBim) Cov (MS,, MS;) .034
Cov (e, &,,) —.011
Principal components of MS:
Cov (RS, RS;) .093
B B, Var (PC,) 098
B By, Var (PC,) .006
(Bunse B, T Bune Bi,) Cov (PC,, PC,) .000
Cov (e, &) —.011

Note: For details, see appendix B in the online edition of the American
Naturalist. The top half shows the covariance components as given in equation
(5), whereas in the bottom half, MS,, and MS; are replaced by their principal
components (PC,, PC,), following equation (A5) in appendix A in the online
edition of the American Naturalist.

pendent of mating is comparably small and of opposite
sign to the covariance in RS (table 4). This suggests that
fitness covariance in this data set is primarily due to var-
iation in MS.

Next we show that we benefit from replacing the col-
linear measures of MS,_ and MS; (Pearson r = 0.64, P <
.0001) by their principle components. The PCA approach
first confirms that, within our experimental paradigm, in-
dividuals differed primarily in their overall mating activity
(PC, captures 82% of the total variance in MS) and much
less in their sex bias in mating activity (PC,; table 5). The
PCA approach (coefficients in table 5) indicates that fre-
quent mating in general benefits male fitness more than
female fitness (8., > By, )- As a logical consequence, bi-
asing mating activity in favor of male matings is clearly
beneficial to male fitness and has little effect on female
fitness (8., > By, » even though not statistically signifi-
cant). A likely reason is that maternal fitness hardly de-
clines even at very low MS;, where offspring can be pro-
duced by selfing (fig. 5). As a major insight, the PCA
approach shows that individuals are selected not only to
increase overall mating frequency but also, when possible,
to bias mating activity in favor of the male role. Given
unilateral copulations, this suggests that B. glabrata indi-
viduals may face conflicts over the preferable male role
during mating.

The PCA-based decomposition of fitness covariance
(table 4, bottom) explicitly shows that elevated overall
mating activity increases both RS, and RS, The sex bias
in individual mating activity contributes only a minor por-
tion to fitness covariance. This value being positive con-
firms our interpretation that mating in either sex function
is not detrimental to fitness through the other sex.
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Perspectives

Earlier work by Arnold (1994) and Arnold and Duvall
(1994) established the conceptual foundations for the anal-
ysis and interpretation of Bateman gradients in hermaph-
rodites. Building on their framework, our synthesis in-
corporates three important aspects of reproduction in
hermaphrodites that remained insufficiently treated: (1)
cross-sex interactions between male and female function
to elucidate how hermaphroditism affects the strength and
direction of sexual selection, (2) explicit solutions for the
treatment of biological and statistical nonindependence
between individual sex-specific measurements, and (3) an
implementation of selfing into the framework for Bateman
gradients.

Even though we have focused on copulating simulta-
neous hermaphrodites, our extensions can be adopted for
other hermaphroditic systems, including external fertil-
izers, broadcast spawners, or wind- and animal-pollinated
monoecious plants. For applications to plants, it will be
useful to reconsider the definition of mating success. While
our article has been guided by a view of physically inter-
acting individuals, “mating” in plants needs to be con-
nected with actual pollination events (such as the number
of pollinator visits that transfer pollen of a given paternal
plant or the number of pollen donors used in an artificial
pollination). Beyond this, a logical next step would ac-
commodate sexually polymorphic systems, such as gyn-
odioecy (females co-occurring with hermaphrodites;
Delph et al. 2007), androdioecy (males co-occurring with
hermaphrodites; Pannell 2002; Weeks et al. 2006), or
aphally (where some individuals lack a copulatory organ;
Doums et al. 1998). Equations (3a) and (3b) then require
extension to include pure males, pure females, or aphallic
individuals, respectively. This would allow studying the
interaction of concurrent selection on hermaphrodites and
pure sex individuals.

Table 5: Principal components of MS,, and MS; and the resulting
PCA-based Bateman gradients in our sample data set from Biom-
phalaria glabrata

Regression
Principal coefficients Comparison
components (eqq- [3]) of slopes
PC, PC, PC, PC, t p
Loading:
MS,, 634 773 B, 348*  —2010 .049
MS; 773 —.634 B .118*
Eigenvalue  2.395 511 wee, 199 —.540 .589
Percent 82.4 17.6 .059

fpc,

Note: Same data as in table 4. Principal component calculations based on
the covariance matrix.
* P<.05.
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A second desirable development concerns the evolu-
tionary dynamics of Bateman gradients, an aspect about
which the static framework used here is silent. Morgan
(1994) already established that hermaphroditism may con-
strain potential evolutionary trajectories, and empirically
establishing these trajectories in response to variation in,
for example, different mating modes will now be revealing.

Third, while the Bateman gradient approach ignores
individual variation in offspring quality (or reproductive
value), there is rising awareness that female MS often in-
creases RS primarily through offspring quality or enhanced
genetic diversity (Jennions and Petrie 2000; Simmons
2005; Sprenger et al. 2010) rather than through pure off-
spring numbers. It thus seems timely (though challenging)
to develop approaches that complement quantifications of
Bateman gradients with measures that disentangle sexually
and nonsexually selected contributions to variation in off-
spring quality or survival (cf. Kirkpatrick and Lande 1989).

Our extensions to the Bateman gradient approach for
hermaphrodites also offer novel perspectives on other phe-
nomena of sexual selection. First, Bateman gradients may
inform a long-standing debate about “preferred mating
roles.” While Charnov (1979) and many others since have
argued that mating in hermaphrodites is primarily moti-
vated by a desire to donate rather than receive sperm, the
alternative view of a general preference for the female mat-
ing role has also been advocated (Leonard 2005, 2006, and
references therein). Generally, hermaphrodites should pre-
fer the mating role that offers higher benefit from addi-
tional matings (Anthes et al. 2006), and this can depend
greatly on the recent mating history (Koene and Ter Maat
2005). The sex function with the higher expected benefit
is easily identified using Bateman gradients. Whether this
preference is actually exhibited then further depends on
the effort or cost involved in achieving additional matings,
an aspect about which Bateman gradients are silent (Jen-
nions and Kokko 2010).

Furthermore, Bateman gradients could illustrate the in-
terplay between preferred mating roles and sex allocation
(Janicke and Schirer 2009; Schirer 2009). Given the Fisher
condition (Fisher 1958; Houston and McNamara 2005),
any bias in sex allocation automatically increases the re-
turns per unit investment to the sex function with the
lower resource allocation. Animals may thus preferably
exhibit this sex function during mating (Schirer 2009),
which could be tested by correlating Bateman gradients
against sex allocation in a comparative context. Within
populations, relatively male-biased individuals may instead
be more competitive in the male function and therefore
preferably copulate in that role (Janicke and Schirer 2009).
This could be tested by manipulating sex allocation ex-
perimentally and studying the resulting Bateman gradients.

Finally, our reworked analytical treatment of Bateman

gradients for hermaphrodites will aid future analyses of
sexual selection on individual traits. A prime goal will be
to establish which traits experience sexually mutualistic,
antagonistic, or neutral selection (cf. Garefalaki et al. 2010)
and to understand how alternative selection regimes vary
with the ecological and social context (Ashman and Mor-
gan 2004; Brown et al. 2009). Corresponding empirical
analyses are already available for some hermaphroditic
plants (Campbell 1989; Morgan and Conner 2001; Hodg-
ins and Barrett 2008) but are still lacking for hermaph-
roditic animals. We hope that our synthesis stimulates re-
search efforts into these directions.
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The hermaphroditic freshwater snail Biomphalaria glabrata can assume either sex role during copulation, but fitness benefits are highest when playing

male. Image by Gregor Schulte and Nils Anthes.



